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Abstract: The temperature dependence of the mass, leptonic decay constant, and width

of heavy-light quark peseudoscalar and vector mesons is obtained in the framework of

thermal Hilbert moment QCD sum rules. The leptonic decay constant of both pseudoscalar

and vector mesons decreases with increasing T , and vanishes at a critical temperature

Tc, while the mesons develop a width which increases dramatically and diverges at Tc,

where Tc is the temperature for chiral-symmetry restoration/quark-gluon deconfinement.

These results indicate the disappearance of hadrons from the spectral function, which then

becomes a smooth function of the energy. This is interpreted as a signal for deconfinement

at T = Tc. In contrast, the masses show little dependence on the temperature, except

very close to Tc, where the pseudoscalar meson masses increase slightly by 10-20%, and

the vector meson masses decrease by some 20-30%.
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1. Introduction

The thermal behaviour of hadronic Green’s functions, obtainable in a variety of theoretical

frameworks, plays a fundamental role in understanding the dynamics of the quark-gluon

plasma. One such framework is that of QCD sum rules [1], based on the Operator Product

Expansion (OPE) of current correlators beyond perturbation theory, and on the notion of

quark-hadron duality. The extension of this program to finite temperature was first dis-

cussed long ago in [2]. It is based on two basic assumptions, (a) that the OPE remains valid

at T 6= 0, with perturbative QCD (PQCD) and the vacuum condensates developing a tem-

perature dependence, and (b) that the notion of quark-hadron duality also remains valid.

Additional evidence, from solvable quantum field theory models, supporting these assump-

tions was provided later in [3]. Numerous applications of this technique have been made

over the years [5], leading to the following consistent picture. (i) With increasing temper-

ature, particles that are stable at T = 0 develop a non-zero width, and resonances become

broader, diverging at a critical temperature interpreted as the deconfinement temperature

(Tc). This width is a result of particle absorption in the thermal bath. (ii) The onset of the

continuum in hadronic spectral functions, traditionally accounted for by PQCD, decreases

and approaches threshold near Tc. In other words, as T → Tc hadrons melt and disappear

from the hadronic spectral functions, which become perfectly smooth. (iii) This scenario is

further supported by results for hadronic and electromagnetic mean-squared radii, which

also diverge at Tc [4]. In addition, QCD sum rules in the axial-vector channel have provided

(analytical) evidence for the near equality of the critical temperatures for deconfinement

and chiral-symmetry restoration [6]. Regarding the temperature dependence of a hadronic

mass, this parameter does not appear to be a relevant signal for deconfinement. Concep-

tually, given either the emergence or the broadening of an existing width, together with

its divergence at Tc, the concept of mass looses its meaning. In practical applications, in

some cases the mass increases slightly with increasing T , and in others it decreases.

In this paper we use Hilbert moment QCD sum rules for heavy-light quark pseudoscalar

and vector meson correlators to determine the thermal behaviour of the hadronic masses,
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couplings, and widths. At T = 0 this problem was discussed long ago in [7 – 9]. While

there are only four ground-state pseudoscalar heavy-light quark mesons in the spectrum

(D, Ds, B, and Bs), and similarly for vector mesons, it is possible to determine the decay

constants for arbitrary meson masses in a self-consistent way [8]. The result is that the

leptonic decay constants obey a scaling law as a function of the meson mass. Since we

are only interested in the temperature behaviour of the hadronic parameters, we shall

normalize all our results to those at T = 0, thus obtaining a universal functional relation.

We find that the meson masses are basically independent of T , except very close to Tc

where they increase slightly (pseudoscalars) by 10–20%, or decrease (vector mesons) by

20–30%. Here Tc is the critical temperature for chiral-symmetry restoration/quark-gluon

deconfinement. The leptonic decay constants decrease with increasing T , and vanish at

the critical temperature. Pseudoscalar mesons develop a non-zero hadronic width that

increases with increasing T and diverges at Tc, while vector meson widths exhibit a similar

beahaviour. These results may be interpreted as providing (analytical) evidence for quark

deconfinement at T = Tc.

2. Pseudoscalar mesons

We begin by defining the correlator of axial-vector divergences at finite temperature, i.e.

the retarded Green’s function

ψ5(q
2, T ) = i

∫

d4 x eiqx θ(x0) ≪ |[∂µAµ(x) , ∂νA†
ν(0)]| ≫ , (2.1)

where ∂µAµ(x) = mQ : q̄(x) i γ5 Q(x) : , q (Q) refers to the light (heavy) quark field, and

mQ ≫ mq is assumed. The matrix element above is the Gibbs average

≪ A · B ≫=
∑

n

exp(−En/T ) < n|A · B|n > /Tr(exp(−H/T )) , (2.2)

where |n > is any complete set of eigenstates of the (QCD) Hamiltonian. We use here the

quark-gluon basis, which allows for a smooth extension of the QCD sum rule program to

non-zero temperature [3]. At T = 0 and to leading order in PQCD [9]

1

π
Im ψ5(x, 0) =

3

8π2
m4

Q

(1 − x)2

x
, (2.3)

where x ≡ m2
Q/s, with s ≥ m2

Q, and 0 ≤ x ≤ 1. At finite temperature there are two

distinct contributions to the correlator, the so called scattering term (q2 space-like), and

the annihilation term (q2 time-like) [2]. After a straightforward calculation we find the

former to be exponentially suppressed, so that it can be safely neglected, while the latter

is given by

1

π
Im ψ5(x, T ) =

1

π
Im ψ5(x, 0)

{

1 − nF

[ ω

2T
(1 + x)

]

− nF

[ ω

2T
(1 − x)

]

}

, (2.4)

where Im ψ5(x, 0) is given by eq. (2.3), nF (z) = (1 + ez)−1 is the Fermi thermal function,

and in the rest frame (q = 0) of the thermal bath x = m2
Q/ω2. At temperatures below T ≃
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200 MeV one can safely assume the heavy quark mass to be temperature independent [10].

The first thermal function above is exponentially suppressed and can be safely neglected

for temperatures of order O(100 − 200MeV) , but the second one does contribute near

threshold.

Up to dimension d = 6 the non-perturbative expansion of the correlator at T = 0 is

given by [7, 9]

ψ5(q
2)|NP =

m2
Q

m2
Q − q2

C4 < O4 > +
m3

Q

4

q2

(m2
Q − q2)3

C5 < O5 > +
m2

Q

6

×
[

2

(m2
Q − q2)2

−
m2

Q

(m2
Q − q2)3

−
m4

Q

(m2
Q − q2)4

]

C6 < O6 >, (2.5)

where

C4 < O4 > =
1

12π
< αs G2 > −mQ < q̄ q >, (2.6)

C5 < O5 > = < gs q̄ i σµν Ga
µν λa q >≡ 2 M2

0 < q̄ q > , (2.7)

C6 < O6 > = παs < (q̄γµλa q)
∑

q

q̄γµλa q >
V S
=⇒ −16

9
π αs ρ| < q̄q > |2 , (2.8)

and mc(mc) ≃ 1.3GeV, mb(mb) ≃ 4.2GeV, < q̄q >≃ (−250MeV)3, < αsG
2/12π >≃

0.003 − 0.006GeV4, M2
0 ≃ 0.4 − 0.6GeV2, and ρ ≃ 3 − 5 accounts for deviations from

vacuum saturation (VS). Use of these values in Hilbert moment sum rules reproduce the

pseudoscalar meson masses at T = 0. However, they will play no crucial role in our analysis

as changes in these parameters would only affect the normalization at T = 0.

For the light-quark condensate at finite temperature we shall use the result of [11],

obtained in the framework of the composite operator formalism, valid for the whole range

of temperatures: T = 0 − Tc, where Tc is the critical temperature for chiral symmetry

restoration. There is lattice QCD evidence [12] as well as analytical evidence [6] for this

critical temperature to be (almost) the same as that for deconfinement. The ratio R(T ) =≪
q̄q ≫ / < q̄q > from [11] as a function of T/Tc is shown in figure 1 .

The low temperature expansion of the gluon condensate is proportional to the trace

of the energy-momentum tensor, and it starts only at order T 8 [13], viz.

≪ αs

12π
G2 ≫=<

αs

12π
G2 > − αs

π

π4

405

N2
F (N2

F − 1)

33 − 2NF

(

ln
Λp

T
− 1

)

T 8

f4
π

, (2.9)

where NF is the number of quark flavours, and Λp ≈ 200 − 400 MeV. To a good approxi-

mation this can be written as

≪ αs

12π
G2 ≫=<

αs

12π
G2 >

[

1 −
( T

Tc

)8]

. (2.10)

Because of this T - dependence, the gluon condensate remains essentially constant up

to temperatures very close to Tc. Hence, the thermal non-perturbative QCD correlator is

basically driven by the quark condensate. Concerning the dimension d = 6 condensate, it
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Figure 1: The light-quark condensate ratio R(T ) =≪ q̄q ≫ / < q̄q > as a function of T/Tc

from [11].

has been argued that the vacuum saturation approximation breaks down at finite temper-

ature [14]. This is based on the comparison between the slopes of the low temperature ex-

pansion (chiral perturbation theory) with and without assuming vacuum saturation. They

are in fact numerically different. However, this result is only valid at very low temperatures

(T ≪ fπ); hence it cannot be extrapolated to T ≃ Tc. In fact, both the quark condensate

and the four-quark condensate should vanish at the same temperature T = Tc. In any case,

numerically, at temperatures of order T ≃ 100MeV the quark condensate dominates over

the gluon condensate, the dimension d = 5 condensate is comparable to ≪ q̄q ≫, and the

dimension d = 6 condensate is almost two orders of magnitude smaller. Hence, potential

violations of vacuum saturation can be safely ignored. Finally, at finite temperature it is

possible, in principle, to have non-zero values of non-diagonal (Lorentz non-invariant) vac-

uum condensates. There is one example discussed in the literature [15] with enough detail

to make a numerical estimate of their importance, and it refers to operators of spin-two

(quark and gluon energy momentum tensors). The low temperature expansion of these

terms starts at order O(T 4), in contrast to a T 2 dependence for the diagonal condensates.

We find that at temperatures of order T ≃ 100MeV both non-diagonal condensates are

three orders of magnitude smaller than the corresponding diagonal equivalents. We shall

then ignore non-diagonal condensates in the sequel.

Turning now to the hadronic sector, the spectral function at T = 0 can be written as

1

π
Im ψ5(s)|HAD = 2 f2

P M4
P δ(s − M2

P ) + θ(s − s0)
1

π
Im ψ5(s)|PQCD , (2.11)

where MP and fP are the mass and leptonic decay constant of the pseudoscalar meson,
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Figure 2: The ratio s0(T )/s0(0), eq. (2.14), as a function of T/Tc for mQ = mc.

and the continuum, starting at some threshold s0, is modeled by perturbative QCD. With

this normalization, fπ ≃ 93MeV. Anticipating the pseudoscalar mesons to develop a

sizable width ΓP (T ) at finite temperature (particle absorption in the thermal bath), and

using a Breit-Wigner parametrization, the following replacement will be understood

δ(s − M2
P ) =⇒ const

1

(s − M2
P )2 + M2

P Γ2
P

, (2.12)

where the mass and width are T−dependent, and the constant is fixed by requiring equality

of areas, e.g. if the integration is in the interval (0 −∞) then const = 2MP ΓP /π.

The continuum threshold s0 above also depends on temperature; to a very good ap-

proximation it scales universally as the quark condensate [16], i.e.

s0(T )

s0(0)
≈ ≪ q̄q ≫

< q̄q >
, (2.13)

where s0(0) is clearly channel dependent. At the critical temperature we expect s0(Tc) =

m2
Q, in which case eq. (2.13) can be rewritten as

s0(T )

s0(0)
=

≪ q̄q ≫
< q̄q >

[

1 −
m2

Q

s0(0)

]

+
m2

Q

s0(0)
, (2.14)

This is shown in figure 2 for the case mQ = mc and s0(0) = 5GeV2; a qualitatively similar

behaviour is obtained for mQ = mb and s0(0) ≃ (1.1 − 1.3)M2
B .

The correlation function ψ5(q
2, T ), eq. (2.1), satisfies a twice subtracted dispersion

relation. To eliminate the subtractions one can use Hilbert moments at Q2 ≡ −q2 = 0, i.e.

ϕ(N)(T ) ≡ (−)N+1

(N + 1)!

( d

dQ2

)N+1
ψ5(Q

2, T )|Q2=0 =
1

π

∫ ∞

m2

Q

ds

sN+2
Im ψ5(s, T ) , (2.15)
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Figure 3: The ratio MP (T )/MP (0) as a function of T/Tc.

Figure 4: The ratio fP (T )/fP (0) as a function of T/Tc.

where N = 1, 2, . . .. Invoking quark-hadron duality

ϕ(N)(T )|HAD = ϕ(N)(T )|QCD , (2.16)

and combining the continuum contribution in the hadronic spectral function with the

– 6 –
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Figure 5: The width ΓP (T )) as a function of T/Tc, with ΓP (0) = 0.

PQCD piece of the QCD counterpart leads to the finite energy Hilbert moments

1

π

∫ s0(T )

0

ds

sN+2
Im ψ5(s, T )|POLE =

1

π

∫ s0(T )

m2

Q

ds

sN+2
Im ψ5(s, T )|PQCD

+ϕ(N)(T )|NP , (2.17)

where Im ψ5(s, T )|POLE is given by the first term in eq. (2.11) modified according to

eq. (2.12), the PQCD spectral function corresponds to eq. (2.4), and

ϕ(N)(T )|NP = −mQ ≪ q̄q ≫
m2N+2

Q

[

1 − 1

12π

≪ αsG
2 ≫

mQ ≪ q̄q ≫ − 1

4
(N + 2)(N + 1)

× M2
0

m2
Q

− 4

81
(N + 2)(N2 + 10N + 9)π αs ρ

≪ q̄q ≫
m3

Q

]

. (2.18)

Using the first three moments one obtains the temperature dependence of the mass, the

leptonic decay constant, and the width. Results from this procedure are shown in figures

3-5 for the charm case; in the case of beauty mesons, results are qualitatively similar.

3. Vector mesons

We consider the correlator of the heavy-light quark vector current

Πµν(q2, T ) = i

∫

d4 x eiqx θ(x0) ≪ |[Vµ(x) , V †
ν (0)]| ≫

= −(gµνq2 − qµqν)Π
(1)(q2, T ) + qµqνΠ

(0)(q2, T ) , (3.1)

– 7 –
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Figure 6: The ratio MV (T )/MV (0) as a function of T/Tc.

where Vµ(x) =: q̄(x)γµQ(x) :. In the sum rule analysis we shall use the function

−Q2Π(1)(Q2, T ), which is free of kinematical singularities. A straightforward calculation

gives
1

π
Im Π(1)(x, T ) =

1

8π2
(1 − x)2(2 + x)

[

1 − nF

(

z+

)

− nF

(

z−
)

]

, (3.2)

where z± ≡ ω
2 T

(1 ± x). In the hadronic sector, we define the vector meson leptonic decay

constant fV through

< 0|Vµ(0)|V (k) >=
√

2 MV fV ǫµ , (3.3)

so that the pole contribution to the hadronic spectral function is 2f2
V δ(s−M2

V ). At T = 0

the vector meson D∗(2010) has a very small width in the keV range (96 ± 22 keV ), which

we expect to increase with increasing T , so that the replacement in eq. (2.12) will be made.

The Hilbert moments at Q2 = 0 of the function −Q2Π(1)(Q2, T ) are given by

ϕ(N)(T ) ≡ (−)N+1

(N + 1)!

( d

dQ2

)N+1
[−Q2Π(1)(Q2, T )]|Q2=0

=
1

π

∫ ∞

m2

Q

ds

sN+1
Im Π(1)(s, T ) . (3.4)

Following the same procedure as for the pseudoscalar mesons (see eq. (2.17)), the sum rules

become

1

π

∫ s0(T )

0

ds

sN+1
Im Π(1)(s, T )|POLE =

1

π

∫ s0(T )

m2

Q

ds

sN+1
Im Π(1)(s, T )|PQCD

+ϕ(N)(T )|NP , (3.5)
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Figure 7: The width ΓV (T ) as a function of T/Tc.

where ϕ(N)(T )|NP is given by

ϕ(N)(T )|NP = −mQ ≪ q̄q ≫
m2N+4

Q

[

1 − ≪ αsG
2 ≫

12πmQ ≪ q̄q ≫ − (N + 2)(N + 3)

4

×M2
0

m2
Q

+
4

81
(N + 2)(20 + N − N2)π αs ρ

≪ q̄q ≫
m3

Q

]

. (3.6)

Using the first three Hilbert moments to find the temperature dependence of the

hadronic parameters, we obtain for the mass and the width of D∗(2010) the results shown

in figures 6-7. The behaviour of the vector-meson leptonic decay constant will not be

shown, as it is essentially the same as that of the pseudoscalar-meson in figure 4. Similar

results are found for the case of the beauty vector meson B∗.

4. Conclusions

The thermal behaviour of pseudoscalar and vector meson decay constants, masses, and

widths was obtained in the framework of Hilbert moment finite energy QCD sum rules.

This behaviour is basically determined by the thermal light quark condensate on the QCD

sector, and by the T-dependent continuum threshold on the hadronic sector. Normalizing

to values at T = 0, and using the method of [8] for arbitrary masses, there follows a universal

relation for the hadronic parameters as a function of T/Tc. Results show that the decay

constants decrease with increasing temperature, vanishing at T = Tc, while the widths

increase and diverge at the critical temperature. Such a behaviour provides (analytical)

evidence for quark-gluon deconfinement, and is in qualitative agreement with corresponding

results obtained in the light-quark sector. Finally, pseudoscalar meson masses increase
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slightly with temperature by some 10–20%, while vector meson masses decrease by 20–30%.

Given the dramatic emergence of monotonically increasing widths Γ(T ), there is little if

any significance of this temperature behaviour of the masses, i.e. the relevant signals for

deconfinement are the vanishing of the leptonic decay constants and the divergence of the

widths at T = Tc.
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